A matrix analysis of different centrality measures
نویسندگان
چکیده
Node centrality measures including degree, eigenvector, Katz and subgraph centralities are analyzed for both undirected and directed networks. We show how parameter-dependent measures, such as Katz and subgraph centrality, can be “tuned” to interpolate between degree and eigenvector centrality, which appear as limiting cases of the other measures. We interpret our finding in terms of the local and global influence of a given node in the graph as measured by graph walks of different length through that node. Our analysis gives some guidance for the choice of parameters in Katz and subgraph centrality, and provides an explanation for the observed correlations between different centrality measures and for the stability exhibited by the ranking vectors for certain parameter ranges. The important role played by the spectral gap of the adjacency matrix is also highlighted.
منابع مشابه
A Matrix Analysis of Functional Centrality Measures
We consider a broad class of walk-based, parameterized node centrality measures for network analysis. These measures are expressed in terms of functions of the adjacency matrix and generalize various well-known centrality indices, including Katz and subgraph centrality. We show that the parameter can be “tuned” to interpolate between degree and eigenvector centrality, which appear as limiting c...
متن کاملThe Influence of Location on Nodes’ Centrality in Location-Based Social Networks
Nowadays, due to the widespread use of social networks, they can be used as a convenient, low-cost, and affordable tool for disseminating all kinds of information and data among the massive users of these networks. Issues such as marketing for new products, informing the public in critical situations, and disseminating medical and technological innovations are topics that have been considered b...
متن کاملMaximal-entropy random walk unifies centrality measures
This paper compares a number of centrality measures and several (dis-)similarity matrices with which they can be defined. These matrices, which are used among others in community detection methods, represent quantities connected to enumeration of paths on a graph and to random walks. Relationships between some of these matrices are derived in the paper. These relationships are inherited by the ...
متن کاملOn the Limiting Behavior of Parameter-Dependent Network Centrality Measures
We consider a broad class of walk-based, parameterized node centrality measures based on functions of the adjacency matrix. These measures generalize various well-known centrality indices, including Katz and subgraph centrality. We show that the parameter can be “tuned” to interpolate between degree and eigenvector centrality, which appear as limiting cases. We also highlight the roles played b...
متن کاملCentrality Analysis for Modified Lattices
We derive new, exact expressions for network centrality vectors associated with classical Watts-Strogatz style “ring plus shortcut” networks. We also derive easy-to-interpret approximations that are highly accurate in the large network limit. The analysis helps us to understand the role of the Katz parameter and the PageRank parameter, to compare linear system and eigenvalue based centrality me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1312.6722 شماره
صفحات -
تاریخ انتشار 2013